March 1995 POLICY FOR RISK CHARACTERIZATION at the U.S. Environmental Protection Agency

INTRODUCTION

Many EPA policy decisions are based in part on the results of risk assessment, an analysis of scientific information on existing and projected risks to human health and the environment. As practiced at EPA, risk assessment makes use of many different kinds of scientific concepts and data (e.g., exposure, toxicity, epidemiology, ecology), all of which are used to "characterize" the expected risk associated with a particular agent or action in a particular environmental context. Informed use of reliable scientific information from many different sources is a central feature of the risk assessment process.

Reliable information may or may not be available for many aspects of a risk assessment. Scientific uncertainty is a fact of life for the risk assessment process, and agency managers almost always must make decisions using assessments that are not as definitive in all important areas as would be desirable. They therefore need to understand the strengths and the limitations of each assessment, and to communicate this information to all participants and the public.

This policy reaffirms the principles and guidance found in the Agency's 1992 policy (Guidance on Risk Characterization for Risk Managers and Risk Assessors, February 26, 1992). That guidance was based on EPA's risk assessment guidelines, which are products of peer review and public comment. The 1994 National Research Council (NRC) report, "Science and Judgment in Risk Assessment," addressed the Agency's approach to risk assessment, including the 1992 risk characterization policy. The NRC statement accompanying the report stated, "... EPA's overall approach to assessing risks is fundamentally sound despite often-heard criticisms, but the Agency must more clearly establish the scientific and policy basis for risk estimates and better describe the uncertainties in its estimates of risk."

This policy statement and associated guidance for risk characterization is designed to ensure that critical information from each stage of a risk assessment is used in forming conclusions about risk and that this information is communicated from risk assessors to risk managers (policy makers), from middle to upper management, and from the Agency to the public. Additionally, the policy will provide a basis for greater clarity, transparency, reasonableness, and consistency in risk assessments across Agency programs. While most of the discussion and examples in this policy are drawn from health risk assessment, these values also apply to ecological risk assessment. A paralleleffort by the Risk Assessment Forum to develop EPA ecological risk assessment guidelines will include guidance specific to ecological risk characterization.

Policy Statement

Each risk assessment prepared in support of decision-making at EPA should include a risk characterization that follows the principles and reflects the values outlined in this policy. A risk characterization should be prepared in a manner that is clear, transparent, reasonable and consistent with other risk characterizations of similar scope prepared across programs in the Agency. Further, discussion of risk in all EPA reports, presentations, decision packages, and other documents should be substantively consistent with the risk characterization. The nature of the risk characterization will depend upon the information available, the regulatory application of the risk information, and the resources (including time) available. In all cases, however, the assessment should identify and discuss all the major issues associated with determining the nature and extent of the risk and provide commentary on any constraints limiting fuller exposition.

Key Aspects of Risk Characterization

Bridging risk assessment and risk management. As the interface between risk assessment and risk management, risk characterizations should be clearly presented, and separate from any risk management considerations. Risk management options should be developed using the risk characterization and should be based on consideration of all relevant factors, scientific and nonscientific.

Discussing confidence and uncertainties. Key scientific concepts, data and methods (e.g., use of animal or human data for extrapolating from high to low doses, use of pharmacokinetics data, exposure pathways, sampling methods, availability of chemical-specific information, quality of data) should be discussed. To ensure transparency, risk characterizations should include a statement of confidence in the assessment that identifies all major uncertainties along with comment on their influence on the assessment, consistent with the Guidance on Risk Characterization [Risk Characterization Handbook updates Guidance on Risk Characterization; Handbook is now attached].

Presenting several types of risk information. Information should be presented on the range of exposures derived from exposure scenarios and on the use of multiple risk descriptors (e.g., central tendency, high end of individual risk, population risk, important subgroups, if known) consistent with terminology in the Guidance on Risk Characterization, Agency risk assessment guidelines, and program-specific guidance. In decision-making, risk managers should use risk information appropriate to their programlegislation.

EPA conducts many types of risk assessments, including screening-level assessments of new chemicals, in-depth assessments of pollutants such as dioxin and environmental tobacco smoke, and site-specific assessments for hazardous waste sites. An iterative approach to risk assessment, beginning with screening techniques, may be used to determine if a more comprehensive assessment is necessary. The degree to which confidence and uncertainty are addressed in a risk characterization depends largely on the scope of the assessment. In general, the scope of the risk characterization should reflect the information presented in the risk assessment and program-specific guidance. When special circumstances (e.g., lack of data, extremely complex situations, resource limitations, statutory deadlines) preclude a full assessment, such circumstances should be explained and their impact on the risk assessment discussed.

Risk Characterization in Context

Risk assessment is based on a series of questions that the assessor asks about scientific information that is relevant to human and/or environmental risk. Each question calls for analysis and interpretation of the available studies, selection of the concepts and data that are most scientifically reliable and most relevant to the problem at hand, and scientific conclusions regarding the question presented. For example, health risk assessments involve the following questions:

<u>Hazard Identification</u> What is known about the capacity of an environmental agent for causing cancer or other adverse health effects in humans, laboratory animals, or wildlife species? What are the related uncertainties and science policy choices?

<u>DoseResponse Assessment</u> What is known about the biological mechanisms and doseresponse relationships underlying any effects observed in the laboratory or epidemiology studies providing data for the assessment? What are the related uncertainties and science policy choices?

<u>Exposure Assessment</u> What is known about the principal paths, patterns, and magnitudes of human or wildlife exposure and numbers of persons or wildlife species likely to be exposed? What are the related uncertainties and science policy choices?

Corresponding principles and questions for ecological risk assessment are being discussed as part of the effort to develop ecological risk guidelines.

Risk characterization is the summarizing step of risk assessment. The risk characterization integrates information from the preceding components of the risk assessment and synthesizes an overall conclusion about risk that is complete, informative and useful for decisionmakers.

Risk characterizations should clearly highlight both the confidence and the uncertainty associated with the risk assessment. For example, numerical risk estimates should always be accompanied by descriptive information carefully selected to ensure an objective and balanced characterization of risk in risk assessment reports and regulatory documents. In essence, a risk characterization conveys the assessor's judgment as to the nature and existence of (or lack of) human health or ecological risks. Even though a risk characterization describes limitations in an assessment, a balanced discussion of reasonable conclusions and related uncertainties enhances, rather than detracts, from the overall credibility of each assessment.

"Risk characterization" is not synonymous with "risk communication." This risk characterization policy addresses the interface between risk assessment and risk management. Risk communication, in contrast, emphasizes the process of exchanging information and opinion with the public – including individuals, groups, and other institutions. The development of a risk assessment may involve risk communication. For example, in the case of site-specific assessments for hazardous waste sites, discussions with the public may influence the exposure pathways included in the risk assessment. While the final risk assessment document (including the risk characterization) is available to the public, the risk communication process may be better served by separate risk information documents designed for particular audiences.

Promoting Clarity, Comparability and Consistency

There are several reasons that the Agency should strive for greater clarity, consistency and comparability in risk assessments. One reason is to minimize confusion. For example, many people have not understood that a risk estimate of one in a million for an "average" individual is not comparable to another one in a million risk estimate for the "most exposed individual." Use of such apparently similar estimates without further explanation leads to misunderstandings about the relative significance of risks and the protectiveness of risk reduction actions.

EPA's Exposure Assessment Guidelines provide standard descriptors of exposure and risk. Use of these terms in all Agency risk assessments will promote consistency and comparability. Use of several descriptors, rather than a single descriptor, will enable EPA to present a fuller picture of risk that corresponds to the range of different exposureconditions encountered by various individuals and populations exposed to most environmental chemicals.

Legal Effect

This policy statement and associated guidance on risk characterization do not establish or affect legal rights or obligations. Rather, they confirm the importance of risk characterization as a component of risk assessment, outline relevant principles, and identify factors Agency staff should consider in implementing the policy.

The policy and associated guidance do not stand alone; nor do they establish a binding norm that is finally determinative of the issues addressed. Except where otherwise provided by law, the Agency's decision on conducting a risk assessment in any particular case is within the Agency's discretion. Variations in the application of the policy and associated guidance, therefore, are not a legitimate basis for delaying or

complicating action on Agency decisions.

Applicability

Except where otherwise provided by law and subject to the limitations on the policy's legal effect discussed above, this policy applies to risk assessments prepared by EPA and to risk assessments prepared by others that are used in support of EPA decisions.

EPA will consider the principles in this policy in evaluating assessments submitted to EPA to complement or challenge Agency assessments. Adherence to this Agency-wide policy will improve understanding of Agency risk assessments, lead to more informed decisions, and heighten the credibility of both assessments and decisions.

Implementation

Assistant Administrators and Regional Administrators are responsible for implementation of this policy within their organizational units. The Science Policy Council (SPC) is organizing Agency-wide implementation activities. Its responsibilities include promoting consistent interpretation, assessing Agency-wide progress, working with external groups on risk characterization issues and methods, and developing recommendations for revisions of the policy and guidance, as necessary.

Each Program and Regional office will develop office-specific policies and procedures for risk characterization that are consistent with this policy and the associated guidance. Each Program and Regional office will designate a risk manager or risk assessor as the office representative to the Agency-wide Implementation Team, which will coordinate development of office-specific policies and procedures and other implementation activities. The SPC will also designate a small cross-Agency Advisory Group that will serve as the liaison between the SPC and the Implementation Team.

In ensuring coordination and consistency among EPA offices, the Implementation Team will take into account statutory and court deadlines, resource implications, and existing Agency and program-specific guidance on risk assessment. The group will work closely with staff throughout Headquarters and Regional offices to promote development of risk characterizations that present a full and complete picture of risk that meets the needs of the risk managers.

APPROVED:	/s/	DATE:	MAR 21 1995
Carol M. Browner, Administrator			

EPA HOMEPAGE | SPC HOME | EPA RISK CHARACTERIZATION PROGRAM | SEARCH | COMMENTS

http://www.epa.gov/ORD/spc/rcpolicy.htm Updated: February 22, 2001